NASA CONTRACTOR

[ as e

REPORT

NASA CR-1990

EVALUATION OF ONE-DIMENSIONAL

APPROXIMATIONS FOR RADIATIVE
TRANSPORT IN BLUNT BODY SHOCK LAYERS

by K. H. Wilson

Prepared by
LOCKHEED MISSILES & SPACE COMPANY

Sunnyvale, Calif.

Jor Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C.

ity

LOAN CcopPY: RETURN T
: (@)
AFWL (boyL)
KIRTLAND AFB, N. M.

« MARCH 1972



TECH LIBRARY KAFB, NM

. u :

Transport in Blunt Body Shock Layers'

Dbl278
1 ﬁsﬁonih;ﬂ— 2. Government Accaéion No. . 3. Recipient's Catalog No. )
NASA CR-1990
4. Title and Subtitle . 5. Report Date
"Evaluation of One-Dimensional Approximations for Radiative March 1972

6. Performing Organizati"on Code

7. Authorls)
K. H. Wilson

8. Performing Organization Report No.

10. Work Unit No.

Sunnyvale, California

9. Performing Organization Name and Address
Lockheed Missiles & Space Company

11. Contract or Grant No.
NAS 2-5749

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

Washington, D.C. 20546

National Aeronautics § Space Administration

Contractor Report.

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

)

One-dimensional approximations for the nongray radiative flux and flux divergence in
radiating shock layers about a blunt entry body are compared with an exact three-dimensional
treatment. A coupled radiative-gasdynamic analysis of the shock layer flow about the entire
body provided the thermodynamic field used in these comparisons. In terms of calculating the
total energy lost by the shock layer, the one-dimensional approximations to the radiative
flux divergence are accurate to within a few percent. In terms of calculating the suface
flux, the one-dimensional approximations introduce the largest errors of ~15% near the
stagnation point. The source of these errors is the slab-like geometric representation of
the shock layer inherent in all one-dimensional models. Finally, for both the radiative
flux and its divergence, the tangent slab approximation provides more accurate results than
differential approximation methods.

17. Key Words ({Suggested by Author(s})

Radiative transport
Shock Layer
One-Dimensional approximation

18. Distribution Statement

UNCLASSIFIED-UNLIMITED

19. Security Classif. (of this report)
UNCLASSIFIED

20. Security Classif. (of this page) 21. No. of Pages 22, Price®
UNCLASSIFIED 66 3.00

.For sale by the Nationa! Technical Information Service, Springfield, Virginia 22151




ABSTRACT

A study has been made of the accuracy of various one-dimensional

approximgtions for calculating the radiative flux and flux divergence in the thin

radiating shock layer surrounding a blunt entry body. The one-dimensional
gpproximations were the tangent slab and the full and half range differential
methods. A numerical calculation of the exact three-dimensional radiative
transport equations provided a reference against which the one-dimensional
models could be judged. A coupled radiative-gasdynamic analysis of the shock
layer flow about the entire body provided the thermodynamic field used in these
calculations. The radiative properties model employed was a three-group
treatment of the continuum emission/absorption processes of high temperature
air. In terms of calculating the total energy lost by the shock layer, the
one-dimensional approximations to the radiative flux divergence are accurate to
within a few percent. In terms of calculating the surface flux, the one-dimen-
sional approximations introduce the largest errors near the stagnation point
where the errors are about 15%. The source of these errors is the slab-like

geometric representation of the shock layer inherent in all one-dimensional

models. PFinally, it is found that for both the radiative flux and its divergence,

the tangent slab approach generally provides the most accurate results wvhen

compared with the differential approximation methods.
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NOMENCLATURE

exponential integral emissivity function

parameters in number density equations

parameter in shock and body conic section equation, dimensionless
Planck function, w/cm?sr

parameter in shock and body conic sectioh equation, dimensionless

consgant in the boundary conditions for the differential approximations,
W/em

parageter in the boundary conditions for the differential approximations,
W/ e

emissivity function, dimensionless

radiative flux, W/cm?

total enthalpy, erg/em

static enthalpy, erg/em

radiative intensity, W/cm?sr

Boltzman constant, 8.617 X 1072 eV/°K

coordinate parallel to ¢-constant plane, dimensionless

parameter defining full- or half-range differential approximation,
dimensionless

3

total particle number density, cm”
air atom concentration, em™
coordinate along rotation axis, dimensionless

pressure, atm

gas constant, erg/gm
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nose radius, m

radial coordinate, dimensionless

distance along ray, dimensionless

temperature, °K

freestream velocity, km/sec

angular averaged intensity, W/cm2

body oriented streamwise coordinate, dimensionless
body oriented normal coordinate, dimensionless

axial coordinate, dimensionless

Greek Nomenclature

parameter in differential approximation flux equation, dimensionless
jonization parameter, dimensionless

dissociation parameter, dimensionless

wall emissivity, dimensionless

exponential integral, dimensionless

3

freestream density, gm/cm
volumetric absorption coefficient, cm—l

Planck function integral for differential approximation flux
equations, W/eme

azimuthal angular coordinate measured about rotation axis, radians
elevation angular coordinate measured from rotation axis, radians
critical value of elevation angle, radians

solid angle, steradians

stagnation point shock layer thickness

iv




denotes

denotes

denotes

denotes

denotes

denotes

denotes

denotes

denotes

denotes

denotes

Superscripts

flux or intensity directed toward shock

flux or intensity directed toward body

Subscripts

tangent point of conical shock or body

point in shock layer at which flux is evaluated
body condition

shock condition

maximum ray length

flux component in x coordinate direction

flux component in y coordinate direction

flux component in z coordinate direction

flux component in r coordinate direction
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1. INTRODUCTION

The analysis of the coupled radiative transport which occurs in the
shock layer surrounding a vehicle entering a planetary atmosphere at extreme
velocities is complicated by two factors. One of these factors is that the
radiant energy transport is determined by an integral of the monochromatic
intensity over the spectrum; an integral requiring treatment of complex ab-
sorption processes. Despite its complexity, a number of investigators
(Ref. 1-6) have successfully solved the spectral integration problem using a
realistic frequency dependence of the spectral absorption coefficients. The
second complicating factor is that the radiant energy transport also requires
a three-dimensional integration of the total intensity over all directions.
Aside from being complicated numerically, this solid angle integration changes
the mathematical character of the basic flow equations. Without radiation, the
gasdynamic equations in the thin shoek layer limit (a 1limit which is valid
for a wide variety of vehicle configurations) are parabolic {Ref. 7). This
provides a tremendous simplification by permitting the flow field to be calculated
using a forward integration procedure starting at the vehicle stagnation point.
When coupled radiation transport is included in the analysis, the equations
become elliptic and the thin shock layer simplification is lost.* Primarily

because of the desire to retain the simplicity of a parabolic system, all

*These comments do not apply to the time dependent method of Callis (Ref. 5)
for which the equations are always hyperbolic in the time marching direction.
However, the time dependent method is more sensitive than the steady state
methods to the computational burden of a three-dimensional solid angle
integration as the entire flow field must be solved numerous times. Hence
the time dependent methods also resortto approximate treatment of the angular
integration.

-1-




previous studies of coupled radiating flow over blunt bodies which consider
detailed spectral transport (and most of those which consider simplified
grey gas models) have reduced the radiative transport to a one-dimensional
level. Mathematically this is accomplished by retaining only the normal com-
ponent of the radiative flux (i.e., normal to the body or shock depending on
the coordinate surface being used); the component of the radiative flux in
the streamwise direction being neglected, e.g. Ref. 8.

It is the purpose of this study to establish the accuracy of this one-
dimensional integration. We have used numerical methods to perform the required
three-dimensional spatial integration, thus obtaining essentially exact
values for the radiative flux and its divergence. We then tested three one-
dimensional transport models against these three-dimensional nuﬁerical solutions.
The one-dimensional models were the tanéent slab and the full- and half-range
differential approximations.

This study evaluating radiative transport approximations is oriented
to the problem of entry vehicle radiative heating. Thus we have employed
the following ground rules. A blunted cone configuration typical of entry
bodies was considered. The distribution of thermodymamic variables in the
shock layer about the body were taken from a fully coupled solution of the
flow of a radia£ing gas about a blunt body.* In this manner a realistic flow
field was used in the evaluation. In evaluating the radiative transport we
used a simplified three-group model for continuum-only air radiation. This
model has been employed by IMSC in other coupled flow studies and has been

established as a reasonably accurate treatment for continuum-only transport.

*The flow field solution was one kindly provided by Mr. Lin Callis of NASA
Iangley Research Center. This solution employed a multi-group grey gas absorption
coefficient model (Ref. 5) thus accounting for the essential radiative character-
istics of high temperature air.

-
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Moreover, the bands display a desirable variation in optical depth (for the
particular flow field considered) with the first group being optically thin,
the second group having intermediate optical depth and the third group being
optically thick.

A series of numerical calculations were performed for the basic
blunted cone shock layer configuration. The results of these calculations
show that the one-dimensional approximations to the radiative flux divergence
is accurate to within a few percent in determining the total energy lost by
the shock layer, i.e., as measured by the integral of the flux divergence
from shock to body. Iocally, in regions where the flux divergence is small
the percentage error can be appreciable; however, these regions have little
effect on the total energy loss. This conclusion is of fundamental importance
as it demonstrates that one-dimensional methods can be employed in the coupled
radiating flow calculation with assurance that the resulting thermodynamic
field is correct. In terms of calculating the surface flux, the one-dimensional
approximations introduce the largest errors near the stagnation point where
the errors are about 15%. The source of these errors is the slab-like geometric
representation inherent in all one-dimensional models. On the conical after-
bodies where the shock layer geometry is much more slab-like, the errors are
reduced below 10%. Finally, it is found that for both the radiative flux and

its divergence, the tangent slab approach generally provides the most accurate

results when compared with the differential approximation methods.




2. THREE-DIMENSIONAL CALCULATIONS

2.1 GEOMETRIC CONSIDERATIONS

The body and shock shape combination is shown in isometric view in
Fig. 1. In analyzing the various geometric constraints on the angular inte-
gration problem we elected to simplify the analysis by restricting the body
and shock shapes to those describable as a general conic section. However,
we allow the describing equations to be given in two segments with the two
segments tangent at the common point. Ietting r and 2z be the radial and
axial variables in a cylindrical coordinate system, then the general conic
section equation is*

= 2a(z - 60) - b(z - 60)2 (1)

where a subscript on a, b, and 60 differentiates between the body (b) and
shock (s). Again, we allow both body and shock shape to be represented by
two equations of the type shown above with the tangent point denoted by
subscript t .

The flow field solution which was provided by Callis was that for a
45° hemispherically blunted conical body. For such a body, Eq. (1) is an
exact -representation. The body and our approximation, via Eg. (1), to the shock
it supports for the flight conditions analyzed (the details of the flight
condition and resulting flow field will be discussed in Subsection 2.4) is
shown in Fig. 2. Table 1 lists the coefficients of Eq. (1) for body and

shock along with the actual and our approximation to the r, z coordinates

¥
A1l lengths are scaled to the body hemispherical nose radius and 60 physically
represents the shock layer thickness at zero.

-




ROTATION AXIS
N SHOCK LAYER

f RAY DIRECTION SHOCK
I SURFACE

RADIAL COORDINATE

<
=

D

PLANE, ¢ = CONSTANT

Fig. 1. - General Configuration of Shock ILayer
and the 0,9 Coordinates for Ray Tracing
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Fig. 2. Shock & Body Shapes
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of the body and shock.®

Table 1 - Body and Shock Shapes
From Callis' Calculation

Shock Body

a, = 1.0346; bs = .7000; c_ = 1.034 a, = 1.000; b = .9000; ¢, = 1.000
§ = .0346; z, = .2044; r, = .LT34 8§ =0; z_ = .3050; r, _

o ts 1:-S o tb tb- ook

z TCallis Teale. 2 Tcallis Teale.
-.0346 0 0 0 0 0
-.010 . 306 .302 .oks5 .296 .297

.139 .589 .583 .175 . 565 .568

. 337 .824 .822 .371 .91 . 791

. 548 1.038 1.0k0 .583 1.003 1.003
1.108 1.610 1.619 1.149 1.569 1. 569
2.145 2.694 2.691 2.209 2.629 2.629

From Table 1 we observe that Eq. (l) fits both the exact body and shock con-
figurations quite well, with the maximum difference between exact and analytic
approximation to the radial coordinate for the various axial coordinates shown
being less than 1%.

In performing the angular integration we first point out that, except
along the stagnation line (r = O), the radiation field has no plane of symmetry.
Hence, there is no preferred orientation for the coordinate system in which we
evaluate the radiation field. Since we are interested in obtaining fluxes
normal to and parallel to the local body tangent, it might seem advantageous to
use such a body oriented system. However, in a body oriented coordinate system,

it is quite difficult to obtain the body-shock shape geometry for a general

¥
Apparently, the body studied by Callis is not precisely a spherical nose.
Hence, we adjusted the coefficient b to obtain the values shovn in Table 1.

=T~




azimuthal plane. (Only when the azimuthal plane lies in a meridional plane
does the geometry become simple.) Hence, we have elected to perform the angular
integrations using the coordinate system sketched in Fig. 1. That coordinate
system is described by azimuthal planes which rotate about an axis parallel
to the radial coordinate. Within each plane, the radiant intensity is evaluated
as a function of angle measured with respect to the rotation axis. Hence,
in this coordinate system, we evaluate the components of the net flux in the
r and z directions.

The geometry picture will be clarified by reference to Figs. 3, L,
and 5.* In Fig. 3 we display a view looking down along the rotation axis of
Fig. 1, i.e., a "top" view. We can see that the various azimuthal planes
are defined by the condition ¢ = constant . The plane perpendicular to the
axial coordinate 2z is defined to be ¢ =0 . Before leaving Fig. 3, note
that L is the distance from the rotation axis measured along a generator of
the ¢ plane. Now we consider Fig. U4, which shows the view in the plane
¢ = constant. Note that for a general value of ¢ , the body and shock shape
are not axisymmetric. Indeed, for ¢ greater than the asymptotic shock and
body cone angles, these surfaces are not closed. In the view offered by Fig. L,
we can see clearly the definition of the elevation angle 6 . Together, the
angles ¢,0 define a direction (i.e., ray) along which the radiant intensity
is determined. The distance along a given ray is defined by the variable s .
Because of the nonsymmetry in the plane ¢ = constant , it 1s necessary to
evaluate the radiant intensity I(8,9) over the range 0 <6 s 2w . Of course,

this means that the total Um steradiancy is described by rotating the azimuthal

¥*
In Figs. 3, 4, and 5, the scale of the shock layer thickness is greatly
ragnified for ease of interpretation.

-8-




REFERENCE ¢ = 0 PLANE

L COORDINATE PARALLEL TO ¢ = CONSTANT

VIEW GIVEN

IN Fig. 4
RADIAL COORDINATE

OTT OF FIGURE PLANE AXIAL COORDINATE z

VIEW GIVEN
IN Fig. 5

ROTATION AXIS

OUT OF FIGURE PLANE

Fig. 3. -~ Top View Along the ¢ Rotation Axis Showing
Geometric Position of ¢ Constant Planes
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ROTATION AXIS N

SHOCK LAYER POINT
r Z
o, o0

L COORDINATE

Fig. 4. - View in a ¢ Plane Showing Geometric
Position of 6 Constant Ray



plane over the range O < ¢ =7 . At this point we should observe from Fig. 3
that there is a bilateral symmetry about the z-axis so that it is only necessary
to perform the numerical calculation over the range O < @ < m/2 and, subsequently,
double the resultant r, z flux components.

Returning to the Fig. U4 and the 6 variable, there are two limiting
values of 6 designated as 6 and 6+, which describe that portion of ©
space occupied by the body. These limiting angles are ¢ dependent. For
values ot <0 <6 , agiven ray is bounded by the shock surfaces whereas,
for 6 =86 < e+ , the body is the limiting surface. Hence, the intensity
undergoes a discontinuity at 8" and 9+ , and we have anticipated this behavior
in establishing the angular integration mesh. Analytical equations were developed
for determining © and 8  as a function of o ¥

In order to evaluate the radiant intensity along a given ¢,0 direction,
it is necessary to relate the location ,8,s along a ray, first to r,z
coordinates, and subsequently, to the body oriented coordinate in which the flow
field is available. From Figs. 3 and 4, it is apparent that the =z component
along a ray is simply

z(s,9,9) = z, + s sind sing (2)

However, we emphasize that while the rotation axis N 1is aligned with the radial
axis r , once the point is away from the N axis (i.e., s # O), the projection
on the N axis is not the radial coordinate 1r(s,8,9). (The exception is when
@ = 90° , for then the ¢ plane coincides with a meridional plane.) This
condition is clarified with the aid of Fig. 5 which is the view described

in Fig. 3, a view taken through the plane normal to the z-axis. Fig. 5 shows

¥
For convenience, all detailed mathematical developments are collected in

Appendix A.

-11-
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AXTAL COORDINATE
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Fig. 5. - View Perpendicular to Symmetry Axis Showing Construction
of Local Radial Coordinate Value



that the radial coordinate desired is:

rg(s,e,@) = (ro+s cos9)2+ (s sind coscp)2 (3)

The bounding values of the path length Sh can be obtained in a

straightforward manner by observing that at either the shock or body surfaces,

the radial coordinate given by Eg. (3) must equal that given by Eq. (1) with,

in Eq. (1), the axial coordinate given by Eq. (2). These three equations combine
to yield a quadratic equation for sm(e,w) as detailed in Appendix A. There is
one condition for which the equations for 5, admit no solution. Physically
this reflects the fact that the shock and body are conical beyond their respective
tangent points and, in addition, they diverge. That is, the asymptotic shock

angle is larger than the asymptotic body angle. Then, for any value of

*

P > where

* = tan"H(- , (%)
S

with g the slope of the shock in the 1r,z coordinate system, the shock
surface does not close. Hence, when o > w* there is a range of © wvalues
for which a given ray will not intersect the body or shock. These are ©

values in range 6°< 6 < 6  with
M 1, 2 .2 2 %
8% = cot""(c_~ sin"p - cos ®)

For © values which fall in this range, s, =® . Of course, the pathlength
integration cannot be carried to infinity and we set Sp = 10 as a limit for
these conditions.

As we march along a given ray, Egs. (2) and (3) provide the local r,=z
coordinates. The shock layer flow field variables are specified in terms of

boundary layer coordinates fixed on the body with x Dbeing the distance along

-13-



the body surface measured from the stagnation point and y the distance normal
to the body. The relations between the r, z, and x, y coordinate system

is shown in Fig. 6. The key variable is the value of the axial coordinate

2y
from which a body normal will pass through the r,z point in question.

However, since we do not know the direction of the body normal until we

itself, the procedure requires an iterative solution for =z . Using the

determine 2
ete b

b

Z value obtained from the previous pathlength point, this iterative evaluation

b

proceeds quite rapidly. Of course, when Zy, is such that it is on the conical portion

of the body this iterative procedure is unnecessary. Having determined Zy s

the x coordinate is obtained from
z
b 1
_ dr2-2-
x = [ 11+ (%7 a (6)
o
with dr/dz calculated from Eq. (1). The y coordinate may be written down

directly as, cf. Fig. 6,
(zb-zo-s 5in® sing)

y = (1)

31n6b

where 5b is the angle between the body normal at =z = Zy, and the T
direction.

Equation (1) provides a good approximate description of the body
and shock shape. However, the shock thickness is obtained by a subtraction
process and downstream of the tangent point, where the shock has a slight
inflection, errors of the order of 10% in shock layer thickness result.
Such an error cannot have much of an effect on the geometric character of
the radiation field (i.e., the error does not impact critically on the primary
objective of evaluating the one-dimensional radiation transport model).
Indeed, there is no "error" if we view our results as specific to the particular

shock-body configuration offered by Eq. (1), and having generality in the broad

k-
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Fig. 6. - View in a Meridional Plane Showing Geometric
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X,¥ Body Coordinates



sense that these results are applicable to the characteristic shock layer
geometry. However, we do not wish to introduce extrapolation errors in applying
the available shock layer flow field data. Accordingly, we use the shock
layer data in a normalized form with the flow field data given as a function
of y/8(x) where &(x) is the local shock layer thickness. However, in
translating these normalized distributions back to the physical coordinate,

we use 6(x) from our approximate shock and body shape relaticns, Eq. (1),
rather than the shock layer thickness provided by Callis' solution. The
appropriate value for 6(x) is that evaluated at the x-coordinate given by

Eq. (6). As shown in geometric sketch of Fig. 6, we obtain the r,z coordinates
of the intersection of the body normal with the shock (denoted as rs,zs) from

which
r -r

5(x) = y(r ,z,) = ——‘g—b (8)

This completes the description of the methods used to determine the required
geometric relations for locating points along a ray in an arbitrary 0,o

direction.

2.2 ANGULAR INTEGRATIONS

Referring back to Fig. 1, we note that the net radiative flux vector
can be described most conveniently by its components in the 1r,z directions.
For the cylindrical r,z coordinate system, the third coordinate is the
circumferential direction ¢ measured about the symmetry axis =z . However,
the flow component in this direction F is zero. In general, the flux

v

component F_ ~ in the direction of the unit normal i is (Ref. 9)

N
F o= @5 I(s)dQ (9)
Q=bm
_16-



vhere s specifies the local direction of the ray along which the intensity
is given. To find the desired flux components consider the sketch below
which expands the N,8,p coordinate system (shown in Fig. 1) in which we are

evaluating the intensity.

8

/

I(s)
~\e

< E

N 7 z

¢$—90°
&
N

I
l
|
]
| /
< 1,7
\\\J///

Fig. 7. - The N,0,9p Coordinate System

In the N,0,p system, the increment of solid angle is
aQ = |sin®|dsdy (10)°
We note the absolute value on the sin® term in Eq. (10). This requirement
stems from the definition of incremental solid angle (ratio of incremental
area to the square of the separation distance) ﬁhich demands that dQ
always be positive. For the plane parallel problems the reader is probably

familiar with, the © variable has the range 0 <06 < 1 while ¢ is swept

over 2n . However, recall that the conditions on our problem require the
opposite limits, i.e., 0 < 8 <2m and O <¢ <m . Since 6 > sind < O,
and hence we must redefine dQ as dQ = - sin® d0 dQ when m < 8 < 2m,

-17-



From a computational point it is simpler to use the definition of Eq. (10).
For the flux component in the radial direction (keeping in mind that
N and r are parallel so that the unit vector is taken along the N axis),
we note that fi-s = cos® . This is the usual result given for plane-parallel
geometries in which the angular coordinates are measured about the normal to

the surface whose flux component is to be determined. Hence, we can write

™ 21
-
Fr(ro’zo) = | I I. )z (8,p)cos6|sin|addep (11)
o o 0%

For the flux component in the axial direction (i.e., where the unit
vector is in the z direction) ﬁ-; = sin® sin® . This is the component of the

flux normally not calculated in plane-parallel geometries since it is identically

zero. However, in our case we have

T 21

FZ(rO,zo) = f f I, 2 (6,9)sind|sind|sing a6 dp (12)
55 0%

In order to decompose the flux into the desired components in the

body oriented system, we note from the following sketch:

Fig. 8. - Transformation of Flux Components

-18-



that

e |
1]

F,cos 8+ F_ sin § (13)

F
y

F_cos 8§ - F, sin &, (1k)

where 60 is the angle defined by the r axis and the body normal which
passes through the r_,z ~ point of interest. From Eq. (14) we see that Fy
is obtained via a subtraction process. Recall from our earlier discussion
on determination of the ray boundaries (i.e., 8 = 9+ and ©® = 87) that rays
which are nearly parallel to the body are not terminated, for certain ¢
values, by either the body or shock leading to S, = @ , Since these rays are
nearly parallel to the body, it is clear that they do not play an important
role in determining Fy . However, due to the necessity of using a finite
value of s, » concern arose that possible errors introduced into Fr and
FZ would not cancel when Fy was constructed via Eq. (14). To eliminate
this possibility, Fy was obtained by an alternate method in which Egs. (11)
and (12) were substituted directly into Eq. (1L) yielding the result,

m an
Fy(ro,zo) =(J i Iro’zo(e,m)sinelsine|q(9,w)d6 aep (15)

with q(8,p) =(coté - tan 5, sing)cos 6, (15a)
We note that when 6 Tbecomes parallel to the body q(e,¢) is identically
zero ensuring that any errors in I(e,w) at this © wvalue will be cancelled
by a(8,9).
The other quantity we are interested-in is the flux divergence which
is given by
oF _ I
V.F(ro,zo)- g§(ro,zo) = p(ro,zo): L (9,¢)dQ-hnB(ro,zo) (16)

Q=bm o” °

-19-



where | 1s the absorption coefficient, and B the Planck function at the

point r_,z = of interest. Using Eq. (10), we have

™ 2n
fIrO,ZO(G,w)dQ = f f IrO,ZO(e,@)lsine‘de dep (17)
(6ol

Before leaving the section on angular integrations, the mesh selected for the

6 and ¢ variables will be discussed. There was no reason to suspect large
nonuniformities in the intensity (integrated over 6 ) as a function of the
azimuthal angle ¢ . Hence, a uniform ¢ mesh was selected. In establishing
accuracy of the numerical integration scheme, calculations with Ay = 5°

and 10° were performed. On the basis of these calculations it was determined
that Ay = 10° was adequate and this value was used in the results shown later.
The variation of the 8 integrated intensity as a function of ¢ was examined
and found to be quite smooth. From this a posterori test we concluded that
our original choice of a uniform ¢ mesh was correct.

In establishing the 6 mesh, it was clear under most situations, the
intensity I(G,w) would be discontinuous at © =6 and 6 = 9+ . To provide
for this discontinuous behavior, the 6 integration was performed in terms
of four quadrants. Referring to Fig. 4 we find that the angles defining the
four quadrants are as tabulated below:

Angular Range

Quadrant 2 >0 . <0
O (e}
1 0<6 <86 0<6 <60
2 <0 <m 9" <9 <nq/2
3 n<8 <6 nfa<6<8o"
4 6" <0 <on 6" <8 < on
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In addition to performing a separate integration in each quadrant, we focus a

larger number of rays in the 6 regions near 8  and 6+. This was accomplished

by using a geometric series for A8 starting with A9 =1° at © = 6 or N

and increasing according to a specified growth rate. For the results shown,
we used a growth factor of 1.05 which typically required about 150 values of ©
to cover the range from O to 2m for each of the 10 ¢ planes considered.

Hence, we calculated the intensity for, roughly, a total of 1500 rays. The
computation time for each combined flux and flux divergence calculation

was about 1 minute on IMSC's 1108 system.

2.3 GASDYNAMIC, THERMODYNAMIC AND RADIATIVE TRANSPORT PROPERTIES

It was stated in the introduction that one of the ground rules
under which the study of three-dimensional transport effects was to be carried
out, was that a realistic coupled radiating flow field solution would be used.
IMSC was fortunate to have the cooperation of the NASA lLangley Research Center
in providing such a solution. Callis, using his time-dependent method (Ref. 5),

calculated the flow past a 45° spherically blunt cone for the following condi-

tions:
U_ = 16 km/sec
[--]
P = H-U3 X 1077 gm/cm3
Py = 1.00 atm.
R = 2.34 m

As mentioned previously, the resulting body and shockwave shapes are those
given by Fig. 2. Shock layer distributions of static enthalpy and pressure
through the shock layer exhibited some oscillations apparently due to the
numerical methods employed. These numerical oscillations were relatively

21~



small (less than 5%) and we have simply used smoothed enthalpy, pressure
profiles to determine the temperature and number density variations in the
shock layer. The smoothed pressure was essentially constant across the shock
layer and hence the pressure is taken as constant in the shock normal coordin-
ate at the value immediately behind the shock. The smoothed static enthalpy
profiles used in our calculation are shown in Fig. 9 for a number of body
locations.

The thermodynamic and radiative transport model used was that pre-
viously developed by Chou and Blake (Ref. 8). The temperature is obtained
from the simplified state relation

7(°K) = 28.1 (£)0-488 (18)
where h is the static enthalpy in erg/gm and R 1is the gas constant for
cold air, R = 2.86 X 106 erg/egm °K. The number densities (required for the
absorption coefficients) is obtained from the approximate dissociation-
ionization model of Chou and Blake (Ref. 8),

N, = (1-B)W, (19)
where Na is the number of "air" atoms and N, the total number of particles.
From the ideal gas law

N, =6.32 x 10t p/kT
with p in atms and kT in eV units. The quantity B in Eq. (19) takes
on one of two values dependent on whether the flow 1s the ionization or
dissociation regimes:

if B, = .005 B =8B

if Bi < .005 B

1
W
o
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Fig. 9.- Smoothed Static Enthalpy Profiles Through
the Shock Layer
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where a S
2
O(kT)5/2 e-lh.su/kT

B, ={E- (20a)

i a

l+5g(kT)5/2 e-lu.5u/kT

6 3
o, fp &7 T6/T -
B. = 20b

d ) . al/P e-9.76/kT
and a =2,15 x 104; a, = 4.28 x 106
o 1

In Eq. (20), p is in atm. and kT in eV units.

A three group plecewise grey absorption coefficient model which
accounts for the continuum absorption processes in high temperature air, as
developed by Chou and Blake, was employed in our calculations. The first
group extends over the frequency range from O < hv £ 10.8 eV; a region
of low absorption where a Planck mean absorption coefficient is valid for the
shock layer thickness and pressure considered. The two high frequency groups
model the weak frequency dependence of the cross sections resulting from
photoionization of low lying and ground states of nitrogen and oxygen.

Along with frequency averaged absorption coefficients, the transport equation
requires an integral of the Planck function over each of the three frequency
groups. The partial Planck integrals are listed below together with the
absorption coefficients.

Group 1: O < hv < 10.8 eV

b5 ap =1 3/KTr 5 1 0.me0. 2140 0853(KT) ]
Wy = Na b4 (21)
(RT)3[§§ ) e-10.8/kT<(1&8)3+ 3(l§@8)2+ 6@&8)+ ~

ol



) e-10.8/kT[(1o 8)3 10. 8)2 (10 8) + 6]

3(

B, = 5.04 x 103(x7)*

Group 2: 10.8 eV < hv < 12.0 eV

5.16 x 107%7 e'3'57/kT (23)
-2.38/¥T_ e-3775/kT)

W, = N
28 (40 e

e-lo.8/kT[(lO 8)3 10. 8)2+6(1o 8) + 6]

- 5.0k x 103(xm)*

o)
|

+3(

_]_2 O/kT[(l2 O)3+3(12 0)2 (12 O) + 6] (211_)

Group 3: 12.0 eV <€ hy € ®

[5.16 x 10717 o73-5T/%T, ¢ ) 10727 e'2'38/kT]

=N -2.38/kT 5 e-3.57/kT] (25)

[L+10 e

-12. O/kT[(l2 0)3

= 5.04 X 103(1<:T)LL 3(12 O)2 (12 O) + 6] (26)

[oc)
|

In Egs. (21) through (26), kT 1is in eV, p is in cm-l, the partial Planck

integral in W/cmgsr, and the constant a, has the values 7.26 X 10-16 cmeva.

2
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3. ONE -DIMENSTIONAL TRANSPORT
3.1 SOLUTION FOR THE INTENSITY

Along a given ray defined by the ,6 directions, the intensity at

the point T sZy of interest is given by*

s,(®,9)
1., (2,9 =] ulm(s),p(s)IB[2(s) e

r ,2
o° O o

]

-R_JulT(s'),p(s')]as
S ds (27)

where p and B are the frequency averaged properties denoted by Egs. (21)-

(26). It should be clear, then, that Eq. {27) is to be solved separately

for each of the three frequency groups. In arriving at Eq. (27), we use

boundary conditions which state that the inwardly directed intensity is

zero at the body and shock surfaces. Rather than the transport equation in

the form given by Eq. (27), a superior form for numerical computation is to

rewrite Eq. (27) in terms of an emissivity function

-an;Sp.(s')ds' (28)
E(s) =1 - e o

where we have introduced the parameter £ 1into the exponential argument

so that the emissivity function can later be used in a flux calculation.

For the moment we can consider £ = 1 . Then, using Eq. {28), the intensity
equation becomes E(s )
m
l 1]
1., (9,8) =3 | B(s)an(s) (29)
J
o’ %o o

*
In calculating the optical depth, the length scale Rn must be reintroduced
into the pathlength integral.
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Equation (29) is solved by constructing a set of pathlength values
as the calculation proceeds along a given 6,p direction. The geometric
relations described in Appendix A specify the As mesh, the bounding value

Sy and the relations needed to first determine h(s),p(s) and subse-

quently the thermodynamic and radiative properties.

3.2 SLAB APPROXTMATION FOR THE FLUX

The concept of a tangent slab has been used widely in calculating
the radiative flux from blunt body shock layers. In this model the shock
layer geometry is replaced by a plane parallel geometry (i.e. a slab of
infinite extent) in which the thermodynamic properties vary conly in one
direction and the variation is taken to be that occurring along the local body
normal. For a plane parallel geometry, the angular integration of the inten-
sity necessary to obtain the normal component of the flux (of course, the
tangential component will be zero for such a geometry) can be performed

exactly. We obtain the well known result, for the flux at the body surface,

y =0,
8
=0) = . ! 1
Fp(y=0) = 2n [ ulT(y),p()1BIT(y)]- &R, fuly)ay'] ay (30)
o o
where €, is the exponential integral function. In arriving at Eq. (30) we

2

again use the condition of zero inward intensity at the shock and body. In
Eq. (30), the integration path is along the body normal. Again we introduce

an emissivity function, v

Ep(y) =1 - 263[Rnf w(y')ay'] (31)
o]

and the flux becomes,
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B5(5)

F(y=0) = [ B(y)aE(y) (32)
o
Finally, we note that the 63 integral can be approximated by an exponential,
€y(t) =4 ™ (33)
In which case (dropping the subscript P )
E(8)
F(y=0) = G [ B(y)a(y) (34)
o

where E(y) is the emissivity function defined in terms of the exponential
function given by Eq. (28). Egquations (32) and (34) are two approximations
for determining the radiative flux within a one-dimensional approximation.
These equations for the surface flux can readily be extended to the flux at
some arbitrary point y along the body normal. If we denote by a superscript
+ the flux directed toward the shock, and by a superscript - the flux

directed toward the body, we have

Fo(y) = Fo(y)-Fp(y) (35a)
F(y) = P (y)-F (y) (35b)
where EP(Y;5)
F(y) = | By () (362)
EP(O:Y)
6
Fa(y) = [ B(y)aE(5,y) (360)
and o
E(y,s)
F(y) = G [ Byoam(y,y) (37a)
E(0,y) _
F(y) = 3 [ By, (370)
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We mention in advance that Egs. (37a) and (37b) will reappear
in the next subsection covering the differential approximation where particular
values of £ will be assigned.

Before leaving the slab approximation, we write down the one-dimen-

sional plane slab relations for the flux divergence,

vFp = 2m(n) T (y)+ T7(y)- 2B(y)] (38)
where _.AP(Y;é)
I°(y) = | By aay(y,y") (39)
AL(0,y)
I+(y)=.[ B(y")aaL(y',y) (LO)

and where we have introduced a new emissivity
j’ w(y"ay"] (k1)
y!

A(y)=1-&,[R)

involving another exponential integral function. If we again make the ex-

ponential approximation
dE3(t)

_ L -t
&) =-—gg— =3¢ (42)
then we can express the flux divergence directly in terms of F+ and F~
as given by Eg. (37). We have
+ -
v-F(y) = w(y) (2[F (y) + F(y)] - mB(y)} (43)

3.3 DIFFERENTTAL APPROXIMATION

3.3.1 Full-Range Formulation

As given by Vincenti and Kruger, the equations for the full-range

differential approximation are
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v-F = - w(U-UmB) - (L)
YU = -3uF (45)

where U 1is the integrated intensity
v - 10 (46)
Q=bm

Equation (4l4) is the exact statement of the radiant energy conservation law.
Equation (45) follows from the Milne-Eddington approximation, relating the
second angular moment of the intensity to the zeroth moment. The important
point to note is that the Milne-Eddington approximation becomes exact if the
intensity is isotropic over half-space (Ref. 11); this half-space being defined in
terms of an arbitrarily oriented planar surface. If this condition of half-
space isotropy holds, then the net radiative flux will be perpendicular to the
defining surface. From these statements we can gain some insight into the general
applicability of the differential approximation. It is well known that the
differential approximation is accurate in planar geometries. For a planar
problem the radiation field is nearly isotropic in half-space. Then we can
expect for a three-dimensional system that the differential approximation will
be valid if the problem has a local one-dimensional character with respect to
any planar surface, not necessarily a coordinate surface.

As noted in the introduction, the equations representing the general
differential approximation are simplified to a one-dimensional form when coupled

with the flow equations. This is accomplished by the substitution,

oF
vE =3y
oU
ey
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so that Egs. (44) and (45) become

%g = _p(U—LLnB) (LI"?)
U
& = -3ur | | (48)

To derive boundary conditions, it is first necessary to decompose

the net flux into

F=F-F (49)
where F+ is the one-sided flux moving into the gas and F  is the one-sided
flux moving into the wall at the boundary y = 0 . If the wall has an emissivity
€ thenat y =0.

Fo= enB(Tw)-f(l—e)F_ (50)
We can similarly decompose the integrated intensity,

U=U +U (51)
Assuming the wall to be diffuse, the integrated intensity entering the gas
is diffuse so that

" = ert (52)

In order to close the system, it is necessary that we specify

additional information at the boundary relating the half-range integrated
intensity with the half-range flux. The fact that the boundary conditions
require an additional approximation beyond that required elsewhere for the
differential approximation involving the zeroth and first moments is often

overlooked. Consistent with the assumption of half-range isotropy used within

the gaseous medium to relate the second and zeroth moments, we assume

U = 2F (53)

Combining Eqs. (49)-(53), we arrive at
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U + giélfl F = 4mB(T ) : (54)

and for a cold, black wall (T% =0, € = 1) we have

at y =0 U+2F =0 (55)
Similar arguments at the shock boundary {which is also effectively a cold
black wall) lead to

at y =8 U-2F =0 (56)
Equations (L7) and (48) subject to the split boundary conditions given by

Egs. (55) and (56) form the full range differential approximation.

3.3.2 Half-Range Formulation

As an alternative to Egs. (44) and (45), one can consider the dif-
ferential approximation applied to the one-sided fluxes and intensities as
defined by an arbitrary plane surface (Ref. 11). For a one-dimensional
approximation, the rational choice for this "symmetry" plane is one tangent
to the body at the local point of interest. This is the components F+,F_

and U+,U- defined by Egs. (49) and (51). The half-range equations are

+, - _ _
% = +p(me-2TE ) (57)
where
[ 20
J?,+’ - 21 (58)
f 1040
2m

+. =
The defining equation for 4 ’ is evaluated for each half-space range. If
we make the further assumption that the intensity is isotropic in each half-

space, then

P R R (59)
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Combining the two forms of Eq. (57) with Eq. (49) we arrive at

a°r  Ln 4B
2.2 W dy
Ca2 B

+ 2°F (60)

In terms of the half-range formulation, we can write down directly the boundary
conditioﬁs. At the body surface we have
GﬂB(TW) + (1-¢)F"

(2-¢)

and for a cold black wall (T_ =0, ¢ = 1), we have

FHoo

w
+
at y=0 F =0 (61)
and similarly, at the shock, we have

aty =8 F =0 (62)

3.3.3 Solution to the Differential Approximation

With a little manipulation, Egs. (47) and (48) can be combined into

a form identical to Eq. (60). Then, defining an optical depth,*

T o= | udy' (63)
o
we can write the general equation for the differential approximation as

57 =0 (64)

where £ =./3 for the full range formulation and £ =2 for the half-range
formulation. Using the standard method of variation of parameters, the solution
to Eq. (6h) is

F = coe_zT+ clezT+ Yl(T) + Yg(T) (65)

*
For our three-group air radiation model, the differential approximation is
to be solved for three separate grey flux contributions.
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T

where

¥, (r) = 2n [ B(r)e T Dar | (66)
(e}
T

¥ () = em f B(r)e T Mg " (67)

In order to apply the boundary conditions, we solve for the integrated

intensity from Eq. (47) (in optical coordinates) and obtain

I = E[coe_LT— cle£T+ Yl(T) - WE(T)] (68)

Applying the boundary conditions given by Egs. (55) and (56)%, we arrive at

¢, = - @y (69)
_e-sz

¢, = EE:-Egjéz;g; [Yg(TS) + UOYl(TS)] (70)
o

where TS = T(y:é), the optical depth of the entire layer and
a = (2-2)/(2+4) (71)
At this point it is convenient to relate the integrals V and

1

Y, to the one-sided fluxes F' oand F. Comparing Eqs. (37a) and (37b)

with Egs. (66) and (67) we find,

¥ (1) = F'(7) (72)

v,(1) —e T8y (x) - - (r) (73)

Then combining the equations for c_,c, with Egs. (72) and (73) into Eq. (65)

we arrive at

*

Recall that these boundary conditions were derived using half-range fluxes,
hence, they apply for either the full-range or half-range formulations. 1In
other words, Eqs. (55) and (56) are equivalent to Egs. (61) and (62).
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and where

r

Although Bq. (T74)
in this manner to
Yl(T) and W2(T)
and we obtain the
components. Even

flux differs only

Of course, in the

- [FH(n)-F (1)) IO o o740 o247y
FIE# aoe—z('rs—'r)[l_aoe-u'r] )
S (75)

seems somewhat complicated, the flux has been written out

avoid taking differences in the exponentially large integrals
Note that for the half-range formulation, {4 = 2, o = o,

net flux as simply the difference of the positive and negative

for the full range formulation o, = .072, and hence, the

slightly from the value given by the first term in Eq. (7h).

full-range formulation, F+(T) and F (7) differ from these

same quantities evaluated under the half-range formulation since the exponential

arguments differ in these two approaches.

Finally, we can differentiate Eq. (74) and arrive at the flux diver-

gence expression

LF (0)x ad
L) JAF ) ()] + o [t s 7))
LF+( ) -4(Tg-T) (76)
. T C:*’Lc:‘; [1+aoe‘2“] R
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4, COMPARISON OF THREE-DIMENSIONAL AND ONE-DIMENSIONAL TRANSPORT

b1 ADEQUACY OF ANGULAR RESOLUTION

In order to use the three-dimensional calculation of the flux and
flux divergence as a standard against which the validity of the various one-
dimensional model will be Jjudged, it was first necessary to establish the
accuracy of the numerical methods used in the angular integration. The
accuracy of the angular integration can be established only by comparison with
an exact, i.e. analytic, solution. The number of such exact solutions are
limited, to the author's knowledge, to transport between concentric spherical
body-shock configurations with a spherically symmetric variation in the thermo-
dynamic properties (Ref. 12). This limits the comparisons to the stagnation
region. We considered, then, the following problem for the accuracy check.
The shock shape given by Eqg. (1) was adjusted to be spherical with a shock
layer thickness taken one-tenth the nominal value, i.e. 3.46 X 10_3. The
reason for using a very thin shock thickness was that the resulting exact
solution was very closely approximated by the tangent slab result. Corrections
to the slab result to yield the exact flux values could be applied in an
approximate manner. Also for the comparison case, we set the shock layer
temperature and pressure constant at the stagnation point shock values for
the nominal TU_ = 16 km/sec, p_ = 4.10 X 1077 gm/cm2 flight condition. The
specific values were T = 16,000 °K; p = 1.00 atm. Finally, the spherical
nose radius Rn was increased by a factor of 10 from the nominal 2.34 m
value to retain the same physical value of the shock layer thickness § .

For a spherically concentric body-shock geometry with constant thermodynamic
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properties throughout the shock layer, the surface flux at the stagnation

point is (Ref. 13)

.-
5 3 —T(l+ 37§—)
+ 53 (e - |1 (1 =2 e n (77)
z 5,
BEquation (77) applies to each spectral group with the optical depth T
defined for that group.
For the two high frequency spectral groups, T > 1 and Eq. 77,
for 6/Rn << 1 becomes
F

where the first term in brackets in Eq. (78) will be recognized as the tangent
slab result. The first frequency group is optically thin, T << 1, for which

Bq. (77) becomes

75 - 2ne(s/R,) (19)
where
5(6/R,) = gragey L(148/R)% 1 - [(wss/r)%-11%/7) (80)
n

and for 6/Rn <1

g(8/R,)

il
'_-l

1
wiw
3
uw

(81)

In Eq. (79), the coefficient 2T is the result for the tangent slab so that
g(é/Rn) represents the correction to the tangent slab result due to the concentric

sphere geometry. For T>1, Eq. (78) shows that the tangent slab is very accurate
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for the 6/Rn value of .00346 considered. However, for the optically thin
first spectral group, the correction factor is not insignificant even for the
small 6/Rn value selected. Applying the optically thin correction to the
first spectral group, we determined the exact surface flux from the tangent
slab values. Then we performed the three-dimensional numerical calculation
using the same constant property, concentric sphere geometry and found:

F = 44.8 kW/cmg; F = L5} kw/cm2

exact numerical
Hence, the numerical three-dimensional result agrees with the exact value to
within roughly l%. This level of accuracy is certainly adequate for assessing
the validity of the one-dimensional transport methods. The numerical (three-
dimensional integration) calculation used in the above comparison used hp = 5°
and a growth rate factor in the © grid of 1.025. Comparing that result
against the standard grid of Ayp = 10° and growth factor 1.05 for the ©

mesh, showed only a 1% difference with the coarser grid being closer (fortui-

tously) to the exact result given above. Hence, this somewhat coarser grid

was used in the "production" runs discussed below.

h.o COMPARTSON CALCULATIONS

A comparison between the three-dimensional numerical calculation
of the net radiative flux and the three one-dimensional approximate models
for the shock-body shape of Fig. 2 is shown in Figs. 10, 11 and 12. 1In each
of these comparisons, the one-dimensional fluxes were evaluated at numerous
points out to an axial coordinate of 2z = 1.0 and the results are plotted as
continuous curves in Figs. 10, 11 and 12. The three-dimensional results were

evaluated at six axial points. These are listed below along with the
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corresponding surface coordinate values.

%o T %y _f_
0 | 0
.03 .2kt
.10 Lhsh
.30 .803
.50 1.08

1.00 1.79

Figures 10, 11 and 12 show, respectively, the flux comparison as a function of
body location at three shock layer positions: the surface y = O; the shock
layer midpoint y = 6(x)/2; and the shock y = &(x)*.

Considering first Fig. 10, the surface flux comparison, we note two
major facts. One, the error in the various one-dimensional approximations is
essentially a maximum at the stagnation point and is nearly constant (on the
order of 15%) over the spherical portion of the body. Second, the tangent slab
method i1s consistently the best of the one-dimensional approximations although
the half-range differential approximation is quite close to the tangent slab
method. The level of error at the stagnation point was an unexpected result.
This error is due to the fact that the spectral composition of the flux
reaching the surface is dominated by the optically thin first group. For this
optically thin condition, the error due to the spherical shell geometry as
opposed to the plane parallel geometry implicit in all the one-dimensional

methods is roughly given by Eq. (81). For 6/Rn = 0.03k6, Eq. (81) yields

*
The net flux at the surface and midpoint location is negative, i.e. in the
negative y direction.
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an estimated error of 17%, the error observed between the three-dimensional
and one-dimensional stagnation point calculation. Considering the flux com-
parison near the tangency point (zO = 0.30; x = .80) we see that the error
remains close to that produced by the "geometric effect". Apparently the
effect of streémwise temperature variations cancel. Finally, as we proceed
onto the conical portion of the body (zo = 1.0; x = 1.8) the geometry becomes
more one-dimensional (cf. Fig. 2) and, as expected, the error decreases.

In Fig. 11 we compare the flux at the shock layer midpoint. Near
the stagnation point, note that the flux is dominated by the negative component
and the error level is close to that for the surface flux. However, on the
conical portion of the body, since the enthalpy profile becomes flat (cf. Fig. 9
for x = 2), the positive and negative flux components almost cancel. It is not
surprising that, for this small flux value, the percentage error will increase.
The flux emergent through the shock is shown in Fig. 12. The error in the one-
dimensional models is substantially reduced. Clearly this reflects the fact
that the emission contributing to the flux originates from the relatively
thin, high temperature layer near the shock front. Hence, the emission region
is effectively much thinner than the gasdynamical shock layer thickness.

Tt is the flux divergence term which couples the energy loss or gain
into the flow equations. Hence, it is of particular interest to determine how
well the one-dimensional models approximate the exact flux divergence result.
Such a compariscn is shown in Figs. 13, 1L and 15 for the stagnation point
(x = 0), the tangency point (x = .80), and a point on the conical body (x = 1.8).
The one-dimensional models were evaluated at numerous points across the shock

layer at the three selected body locations, and these results provide the
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continuous curves shown in Figs. 13, 1% and 15. The three-dimensional calcula-
tion was performed at y/6 = 0, 0.25, 0.50, 0.75 and 1.00 at the three selected
body locations. Since the flux divergence decays quite rapidly away from the
shock at the stagnation point, x = 0, an additional three-dimensional calcula-
tion was performed at y/B = 0.9. The one-dimensional models provide a good
approximation to the flux divergence throughout the shock layer with the

tangent slab method giving consistently the best overall result. The essential
reason for the effectiveness of the one-dimensional methods in calculating the
flux divergence is that near the shock front, where large energy loss occurs,
the flux divergence is dominated by the optically thin term in Eg. (16).

Since the total flux emitted from the shock layer can be obtained from a spatial
integral of the flux divergence, the accuracy of the one-dimensional methods
displayed by Figs. 13,14,15 may appear, at first thought, to be inconsistent
with the relative inaccuracy in the surface flux. Recall, however, that the
flux out the shock front, which dominates the total energy loss, was accurately
predicted by the one-dimensional methods. Moreover, in regions near the surface
where the flux divergence is quite small, the relative errors in the flux
divergence calculated by the one-dimensional method may be large, although,

on an absolute scale, these errors are unimportant.

The fact that the one-dimensional methods are adequate in predicting
the radiative energy loss or gain is particularly important. This result allows
the one-dimensional methods to be employed in the coupled radiating shock layer
flow field calculation with assurance that the resulting thermodynamic structure
is accurate. Then, should a more accurate evaluation of the surface flux be

desired, one has recourse to performing the detailed three-dimensional calculations
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as described in this report.

The results shown to this point have used the shock layer-body
geometry shown in Fig. 2. This geometry is certainly a thin layer one (6/Rn =
at the stagnation point) and hence the question arises as to what increase in
error would result for a thicker shock layer configuration. To answer this
question, we performed a calculation with the thickness of the shock layer
everywhere increased by a factor of two. Hence, at the stagnation point,
6/Rn = .0692, which corresponds quite closely to the normalized shock layer
thickness for a Jupiter entry probe where the density ratio across the shock
is roughly 10. The thermodynamic properties of the shock layer used in this
"thick" layer calculation were calculated from the normalized profiles given
in Fig. 9. Hence, in physical coordinates, the temperature profile has been
stretched. Results for the surface flux in the thick layer problem are shown
in Fig. 16. As expected, the error in the surface flux has increased. At
the stagnation point it has increased from 16% for 6/Rn = .0346 to 25% for
6/Rn = .0692. Note, however, that this substantial error for the thick shock

layer case is strongly associated with the small optical depth in the spectral

.03L46

region which dominates the surface flux. We performed an additional calculation

using 6/Rn = ,0692 in which the pressure (and only that parameter) was in-
creased by a factor of 10. The optical depth increased and the error in the

tangent slab approximation dropped to lh%.
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5. CONCLUSIONS

Using a shock layer flow field solution and a radiative properties
model which capture the essential physical characteristics of high temperature
radiating flow, we have quantitatively assessed the validity of one-dimensional
methods in evaluating the radiation field. We find that the flux divergence
term which couples the radiation field to the energy equation is well approx-
imated by the one-dimensional models, particularly the tangent slab approxi-
mation. Then, insofar as determining the flow field properties in a coupled,
radiating flow field analysis, the one-dimensional radiative transport model
provides accurate results. In calculating the surface radiative flux from a
given flow field solution, the one-dimensional models introduce errors on the
order of 15% in the hemispherical portion of the body. These errors are a
direct consequence of the fact that the surface flux is dominated by the contri-
butions in the optically thin spectral regions. For such optically thin con-
ditions, the errors in the surface flux reflect the deviation of the hemispheri-

cal-cap geometry from the plane-parallel geometry.
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Appendix A
MATHEMATICAL DEVELOPMENTS

In this appendix we summsrize the maJjor equations employed in the three-~
dimensional transport code. The first relations to consider are the angles
8 {(p) and 9+(¢) defining the angular region, 8~ < 6 < 87, where rays
intersect the body as delineated in the sketch below (this is identical to

the view shown in Fig. 4 as discussed in the main text):

ro,zo/y_

VauCIEN

ROTATION
AXIS, N

N(L)

L =20 ¢ - PLANE COORDINATE L

Fig. A-1 - Geometric Interpretation of the Angles 8 and 6+
The equation for the body surface N(L) in an arbitrary o-plane is¥

2 2
N = 2a(zo+ L sing) - b(zo+ L sincp)2 - Lcos g (A-1)

*For simplicity we write a and b instead of By and bb since we are
only considering the body.
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Also geometrically we have at the tan%ent point

an _

E—Cote

cote__ﬂ
B L

Combining Eqs. (A-2) and(A-3) to eliminate

between cot ©

and the distance

P = cot ©

this relation is

L_

(a—bzo)51n p-r_P

(P2+ b sin%$+cos2¢)

I, at the tangent point.

(A-2)
(A-3)
N , we can obtain a relation
Letting
(A-1)
(A-5)

We can also combine Eqs. (A-1) and (A—3) to obtain another expression between

L and P,

(P2+b sin2@+cos2m)L2 - 2(a sin@—bzosin@-roP)L + (r02-2azo+bzoe) =0

(A-6)

We find that Egqs. (A-5) and (A-6) agree, which they must at the tangent point,

only when

P

where

[

2 _2y,2 2 _2y_ 2 4%
TRt [(ro T )Ko ) (ro T )rb Kl]
. (a-7)
Ty
1
2,2 8
(2azo-bzo ) (A-8)
(a—bzo)sinm (A-9)
b sin%$ + cosgw (A-10)

But the above derivation assumed that Eq. (A-1) describes the body contour

in the @-constant plane.

the tangent point is on the conical afterbody, i.e., zO+L sing > 2z

then Eq. (A-1) is replaced by

N2 = (L sinp +

+ z )2- L2c052¢
tb o

However, when the tangent length L

is such that

2

©y

(A-11)

The derivation proceeds as before and we arrive at an equation identical to

Eq. (A-7) except that the coefficients are
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Ty STtz (A-12)

=~
|

o = Ty Sing (A-13)

K, = cos2¢ - ¢y sinew (A-14)

. . . . + .
Finally, identifying P as the value given by Eq. (A-7) using the positive
sign and P as the value given using the negative sign, we have

8

e+

cot_l(P_) (A-15)

ﬂ+cot-l(P+) (A-16)

The equation defining the limiting value Sh at which the. ray intersects
the shock or body will be derived next. Referring to Fig. 5 in the main text,

note that at any value of s ,

re(s) = (ro+ s cose)2 + (s sind coscp)2 (A-17)

But when s = sm we must also have

r2(sm) - 2a(z-6o)-b(z—60)2 (A-18)

where

z = z_+s sind sing (A-19)
These equations may readily be combined to yield

e.:fa.%q.q.1%
"Ly -9, 3

3 = ( A-20 )
m Q3
where
Q = rocose + sin®d sin@[b(z—&o)—a] (a-21)
2 2
Q =r"- 2a(zo—6o) - b(zo—éo) (A-22)
Q3 = cosge + singe(b sin26+cos2¢) (A-23)

and in Egs. (A-21)-(A-23) the values for a,b,&o appropriate to either the
shock or body shape must be applied, depending on the range of the 6
variable. Examination of Eq. (A-20) shows that the plus sign is to be used

for the shock intersection and the minus sign for the body intersection.
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We again note that if the intersection occurs on the conical portion of the shock

or body, i.e., z(sm) >z then Eq. (A-20) still holds, but the variables

Ql, Q2 and Q3 become

t 2

Q = rocose—sine sineg c(rt+czo) (A-24)
Q, =T 2. (r, +cz )2 (A-25)
2 o t o

Q, = cosTo + sinze(cosem—cgsinEQ) (A-26)

and in these equations the parameters ¢ and ry take the values appropriate
to the shock or body. Finally, note that from Eq. (A-26) we observe that for

P > tan—l(l/c), Q3 can become zero and will do so when B = 6% where
1
0% = cot™t (c?singm - cosecp)2 (A-27)

This expression defines the critical range 6% < 6 < 8~ wherein no intersection
with the shock or body will occur.

The equations relating the shock layer position (s,8,p) to the body-
oriented x,y coordinates will be discussed next. The cylindrical r,z

coordinates are

z(s,0,9) = z,+ s sind sing (A-28)

i
r(s,8,0) [(ro+s cose)z+ (s sin® coscp)e]2 (A-29)

As discussed in the main text (cf. Fig. 6), the key variable is the coodinates

of the body point Ty 2y from which a local normal passes through r,z .

From the geometry shown in Fig. 6 we have

Z, - 2
tan 8 = ——— (A-30)
b
But
Gb = tan_l (%ﬁ B )
22 = 2y
so that a - bzb
tan §, = ———— (A-31)
b rb

-56-



Al

kR
where 2)2

= (2az,_ - bz

b b (A-32)

b
Equations (A-30)-(A-31) form a set of transcendental relations between

ﬁb’ Zy, and T, which are evaluated as follows. An initial estimate for

zbl is obtained, the wvalue at the previous point along the ray being the best
estimate and the value of 2z, being used when the calculation along the ray
is initiated. From Egs. (A—3l)'and (A-32), 8, 1is determined which then allows
Eg. (A-30) to be solved for zbl+l. Of course, this procedure is repeated
until convergence is achieved.

The final mathematical point to be discussed is the technique for deter-
mining the As selection along the ray. Recall that the flow field wvariation
is primarily in the y-direction along the local body normal. Clearly, we wish
to select an appropriate Ay increment and determine As accordingly. For
azimuthal angles ¢ = 90° and O, the connection between As and Ay is quite
eagsy to derive. For arbitrary ¢ , the relation between As and Ay is an
interesting geometric problem. The key to this problem is to view the pro-
jection of the arbitrary 8, ray on the meridional plane, ¢ = 90°.

This is sketched below.

RADIAL COORDINATE r SHOCK

BODY

Ar = Ay/cos 6

Az = As sin © sin ¢

AXIAL COORDINATE z

Fig. A-2 - Geometry for As Mesh Selection
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The change in r(s) can be constructed in two steps. First we have

br, = Ay/cos & (A-33)
which takes us to the point on the meridional plane at fixed 2z where y
has increased the desired Ay increment. Next we move in a direction parallel
to the body by an amount

Az = As sinb sing (A-34)
and, since we are moving parallel, the Ay increment remains fixed. However,

as shown in Fig. A-2, the radial coordinate changes by an amount

Ar2 = Az tan & (A-35)

Hence, we find that

Ay
cos &

r(s+As) = r(s) + + As sin® sinp tan § (a-36)

But r(s+As) can also be related directly to the pathlength position s+As
(cf. Fig. 5 and Eq. (3) of the main text) as

[J-"(S+AS)]2 = [ro+(s+As)cose]2 + [(s+0s)sind coscp]2 (A-37)

Equations (A-36) and (A-37) are sufficient to uniquely specify As in terms of
Ay . We arrive at

-(rl-recose-ssg) * [(ro-r cose)2 + Bz(rl—sa)2 - 52r 2]%

hs = z e (a-38)
(¢ -cos™8-B7)
where r, = r(s) + Ay/cos b
T, = ro + s cos@
‘@ = sin® sinp tan &
B = sinb cosyp

The selection of which sign should be used in front of the radical turns out

to depend on whether Ay should be decreasing or inereasing, i.e., whether
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5

6 1is such that the ray is approaching the body or passing away from the body.
Of course, if 8 < 6 < 6% then the ray is always approaching the body.
However, some rays which intersect the shock will first pass close to the body
and then go on to the shock. It turns out that just at the point of minimum
approach to the body, the radical in Egq. (A-38) passes through zero and at that
point the sign in Eq. (A-38) switches from negative to positive. Also, the
denominator in Eq. (A-38) can pass through zero when @ + § = 90°. The value
of 6 at which the denominator becomes zero corresponds to a condition where

8 is such that the ray is parallel to the local body slope. Of course, when
the ray is parallel, the As value required for a finite Ay change becomes
infinite. This problem is easily surmounted by limiting As to a maximum

Asm . Indeed, we have derived the As 1increment solely on the basis of the

Ay increment, reflecting the large variation in properties normal to the body.
However, streamwise variations also exist and we account for these by always

limiting the As +value from Eq. (A-38) by an a priori bound bs_ .
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